1 Literal Equations 2.5

By the end of this section, you should be able to solve the following problems.

1. Solve for the indicated variable.

\[5y - 3x = -2 \quad \text{for } x \]

2. Solve for the given variable.

\[F = \frac{9}{5}C + 32 \quad \text{for } C \]

3. Solve for the indicated variable.

\[A = \frac{h}{2}(b_1 + b_2) \quad \text{for } b_1 \]

2 Concepts

In previous sections, you studied how to solve an equation for a particular number. In this section we use the exact same reasoning to solve for a particular letter. Below is an example.
2.1 Example

Solve the following equation for x_1.

\[y - y_1 = m(x - x_1) \]

\[y - y_1 = mx - mx_1 \]

\[-mx \quad - mx \]

\[y - y_1 - mx = -mx_1 \]

\[\frac{y - y_1 - mx}{-m} = -\frac{mx_1}{-m} \]

\[\frac{y - y_1 - mx}{-m} = x_1 \]

We don’t like negative signs in our denominators, so change the denominator to a positive and change all the signs in the numerator to get.

\[\frac{y_1 + mx - y}{m} = x_1 \]

In our next example we also solve for a single letter.

2.2 Example

Solve the following equation for x.

\[Tx + by = r \]
Our next example is the familiar perimeter equation.

2.3 Example

Solve for \(l \) in the following equation.

\[
P = 2l + 2w
\]

\[
-2w - 2w
\]

\[
P - 2w = 2l
\]

\[
\frac{P - 2w}{2} = \frac{2l}{2}
\]

\[
\frac{P - 2w}{2} = l
\]

When dividing both sides by a letter or number, make sure to divide the entire expression on both sides by that letter or number. For example, when solving for \(R \) in the expression below we divide the entire
expression on both sides by h

$$Rh = a + b - de$$

$$\frac{Rh}{h} = \frac{a + b - de}{h}$$

$$R = \frac{a + b - de}{h}$$

3 Exercises

1. Solve for the indicated variable.

$$5y - 3x = -2; \text{ for } x$$

2. Solve for C.

$$F = \frac{9}{5} C + 32$$

3. Solve for the indicated variable.

$$A = \frac{h}{2} (b_1 + b_2); \text{ for } b_1$$
4 Solutions

1. Solve for the indicated variable.

\[5y - 3x = -2 \; ; \; for \; x \]

\[
\begin{align*}
-5y & - 5y \\
-3x &= -2 - 5y \\
\frac{-3x}{-3} &= \frac{-2 - 5y}{-3} \\
x &= \frac{-2 - 5y}{-3} \\
x &= \frac{5y + 2}{3}
\end{align*}
\]

2. Solve for C.

\[F = \frac{9}{5} C + 32 \]

\[
\begin{align*}
-32 & - 32 \\
\frac{5}{9}(F - 32) &= \frac{5}{9} \left(\frac{9}{5} \right) C \\
\frac{5}{9}(F - 32) &= C
\end{align*}
\]

3. Solve for the indicated variable.

\[A = \frac{h}{2}(b_1 + b_2) \; ; \; for \; b_1 \]
(2) \(A = \left(2 \frac{h}{2}(b_1 + b_2) \right) \)

\[
\frac{2A}{h} = \frac{h(b_1 + b_2)}{h} = b_1 + b_2
\]

\[
- b_2 - b_2
\]

\[
\frac{2A}{h} - b_2 = b_1
\]